
Proceedings of the 21st Asian Conference on Remote Sensing, 4-8 Dec 2000, Taipei, Taiwan, Vol. 2, 794-799 . 

CLASSIFICATION OF ALGAL BLOOM TYPES 
FROM REMOTE SENSING REFLECTANCE 

 
Soo Chin LIEW, Leong Keong KWOH, and Hock LIM 

Centre for Remote Imaging, Sensing and Processing 
National University of Singapore 

Blk. SOC1 Level 2, Lower Kent Ridge Road, Singapore 119260 
Tel: (65) 8745069  Fax: (65) 7757717  email: liew_soo_chin@nus.edu.sg 

SINGAPORE 
 
 

KEY WORDS: Ocean color, reflectance, algal blooms, phytoplanktons, classification 
 
ABSTRACT A technique for classification of phytoplankton bloom types from remote sensing 
reflectance is described in this paper. Several minor algal bloom events were sighted and their 
characteristics reflectance signatures were collected using a handheld spectrometer during a 
series of sea-truth water sampling campaigns carried out from Dec 1996 to Dec 1999 in coastal 
waters around Singapore. Reflectance spectra of two additional algal bloom classes were also 
collected during two field trips to the Manila Bay. In order to assess the potential of utilizing 
satellite ocean color sensors for algal bloom detection and classification, reflectance data for the 
SeaWiFS and future MERIS sensor spectral bands were simulated from the in-situ radiance 
data. An algorithm based on the singular value decomposition (SVD) technique was then 
applied for classification of algal bloom types from the simulated satellite sensor reflectance 
data. The results show that all the eight algal bloom classes can be distinguished from the clear 
sea water reference sample. The average accuracy of classification using this technique for all 
the classes are 98.6% (for MERIS) and 96.6% (for SeaWiFS), in comparison to 87.5% (MERIS) 
and 73.8% (SeaWiFS) if the reflectance values are used. 
 
1. INTRODUCTION 
 
Phytoplantons (or algae) constitute the base of the marine food web. However, algal blooms 
may cause harm by shading other aquatic life, depleting the dissolved oxygen content, and 
causing paralytic or diarrhetic shellfish poisoning (Richardson 1997). It is important to monitor 
occurrences of algal blooms due to their strong social, economic and health impacts. Satellite 
remote sensing measurement of ocean color provides a tool complementary to in-situ sea-truth 
measurements for algal bloom monitoring. As the individual phytoplankton pigments are 
characterized by their unique light absorption features, this property allows detection and 
identification of algal blooms by ocean color remote sensing technique (Cullen et al. 1997, 
Kahru and Mitchell 1998, Sathyendranath et al. 1994), 
 
Currently, the SeaWiFS sensor on board the Orbview 2 satellite (launched October 1997) 
provides ocean color data with about 1-km resolution. It has six bands in the visible region and 
two in the near- infrared region. Each band has a 20-nm bandwidth. The recently launched 
MODIS sensor on board the NASA's Terra satellite has eight ocean color bands in the visible 
spectral region, with 10 nm bandwidth. The other recent sensor was the OCTS onboard the 
Japan's ADEOS satellite launched in August 1996. ADEOS ceased operation in June 1997 when 
the ADEOS satellite stops its operation. It was the first second-generation ocean color sensor 
after the 10 years gap since NASA's CZCS. Future planned ocean color sensors include the 
NASDA's ADEOS2-GLI and ESA's ENVISAT-MERIS. These future sensors have more 
wavelength bands, all with about 10 nm bandwidths. With the availability of these ocean color 
satellites, it is foreseeable that satellite ocean color data will play an increasingly important role 
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in the monitoring of algal blooms. Algorithms for algal bloom detection and for classification of 
algal bloom types will be required. 
 
In this paper, we describe a method of detecting and classifying algal bloom types based on the 
singular value decomposition technique. Satellite remote sensing reflectance signatures for 
several types of algal blooms were simulated using in-situ reflectance data measured during a 
series of water sampling campaigns around Singapore and in Manila Bay. The satellite sensors 
tested are SeaWiFS and MERIS.  
 
2. ALGAL BLOOM CLASSES 
 
Sea-truth water sampling campaigns were carried out from Dec 1996 to Dec 1999 in coastal 
waters around Singapore (Lin et al. 1999, Liew et al. 2000). In-situ reflectance spectra from sea 
water surface were acquired using a portable spectroradiometer. Several minor algal bloom 
events were sighted and their characteristic reflectance signatures were collected during this 
period. The classes of algal blooms observed include: Trichodesmium (a type of cyanobacteria); 
Chain forming diatoms; Chochlodinium (naked dinoflagellate); Dinoflagellates predominantly 
Dinophysis caudata; Diatoms (Rhizolenia Sp.); and mixture of chain forming diatoms 
(Skeletonema type) with some armoured dinoflagellates. Two additional algal bloom classes 
were collected during two field trips to the Manila Bay. One tr ip was carried out during the algal 
bloom episode (mainly Ceratium and Pyrodinium Bahamense) in Aug 1998, and the other in 
March 2000. Although there was no report of red tide during the later trip, results of water 
sampling in Manila Bay indicated that there were signs of increasing phytoplankton counts. A 
class of sea water reference spectra for sea water samples with low chlorophyll and low 
suspended solids was also collected during the regular water sampling field trips. 
 
Altogether eight algal bloom classes and one reference sea water class are used in the analysis. 
The nine classes of spectra are tabulated in Table 1. 

 
Table 1: The nine classes of reflectance spectra from algal blooms and reference sea water 

Class Description 
1 Clear sea water reference (Singapore) 
2 Trichodesmium (Singapore) 
3 Chain forming diatoms (Singapore) 
4 Cochlodinium (Singapore) 
5 Ceratium and Pyrodinium Bahamense (Manila Bay) 
6 Dinoflagellates (mainly Dinophysis caudata) (Singapore) 
7 Diatoms (Rhizolenia Sp.) (Singapore) 
8 Chain forming diatoms (Skeletonema) with some armoured dinoflagellates (Singapore) 
9 Protoperidinium and Ceratum (Manila Bay) 

 
3. SPECTRAL REFLECTANCE SIGNATURES OF ALGAL BLOOM CLASSES 
 
Spectral reflectance refers to the ratio of the detected radiance reflected from a target surface to 
the total incidence irradiance. In this project, a handheld spectrometer (GER 1500) was used to 
measure the radiance reflected from the sea surface. The detected radiance from the sea surface 
was normalized by the radiance reflected off the surface of a reference white plate to obtain the 
reflectance of the sea surface. The spectrometer has 512 wavelength channels covering the 
wavelength from 350 nm to 1050 nm, with a wavelength resolution of 2 nm.  
 
From the collected spectra, SeaWiFS and MERIS data are simulated according to the band 
specifications shown in Table 2. The simulation is done by integrating the spectrometer radiance 
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within each specified wavelength window to obtain the desired radiance for the correspondin g 
SeaWiFS and MERIS channels. A flat spectral response curve is assumed for each of the 
satellite sensor channels. Only the channels in the visible region (400 nm to 760 nm) are 
considered in the simulation. Hence, the first 6 bands of the SeaWiFS sensor and the first 10 
bands of the MERIS sensor are simulated. The simulated SeaWiFS and MERIS spectral 
reflectance data for the reference sea water and the eight algal bloom classes are shown in Fig. 
1. Each spectrum shown in Fig. 1 is the mean of a set of spec tra corresponding to the reference 
sea water and each of the algal bloom classes. The spectra have been normalized so that each of 
them has a mean value of zero and a variance of one. In this way, the magnitude of reflectance 
has no influence on the normalized spectra, and the shapes of the spectra can be compared 
directly. 
 

Table 2: Spectral bands of the SeaWiFS and MERIS sensors 
MERIS 

BN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
BC 412.5 442.5 490 510 560 620 665 681.25 705 753.75 760 775 865 890 900 
BW 10 10 10 10 10 10 10 7.5 10 7.5 2.5 15 20 10 10 

SeaWiFS  
BN 1 2 3 4 5 - 6 - - - 7 - 8 - - 
BC 412 443 490 510 555 - 670 - - - 765 - 864 - - 
BW 20 20 20 20 20 - 20 - - - 40 - 40 - - 

Note: BN = Band Number, BC = Band Centre (nm), BW = Band Width (nm) 
 
It can be seen that the MERIS spectra of the eight algal bloom classes are quite distinct from 
each other. For many algal bloom types, the spectra can be differentiated visually from their 
shapes around the chlorophyll absorption band at 670 nm. In comparison, the SeaWiFS does not 
have spectral bands beyond 670 nm. Hence, it is expected that SeaWiFS will fare poorer in 
terms of accuracy in classification of the algal bloom types. 
 
4. CLASSIFICATION OF ALGAL BLOOMS FROM REFLECTANCE 
 
An algorithm based on the singular value decomposition (SVD) technique (Danaher and 
Omongain 1992) has been developed for the detection and classification of algal bloom types 
from reflectance data. This algorithm is a type of supervised classification technique. In this 
algorithm, a "key vector" Vi(λ) for each algal bloom class labelled by the subscript i is first 
determined from the reflectance spectra of the algal bloom class of interest measured during the 
field trips. This key vector acts as a sort of template for this class of algal bloom. A given 
measured spectrum R(λ) to be classified is then "matched" to this key vector using the dot-
product operation to give a key value wi. Mathematically, the dot-product operation is 
represented by the formula:  

w R Vi i= ∑ ( ) ( )λ λ
λ

 (1) 

 
Ideally, if the spectrum R(λ) belongs to class-i, then wi=1, otherwise wi=0. Using a training set 
of spectra of known classes, the key vector for each of the nine classes (8 algal bloom classes + 
1 reference sea water class) are obtained using the singular value decomposition technique. The 
key vectors are then matched to each of the unknown spectra R(λ) to be classified, using the dot-
product operation. In this way, each spectrum is transformed into a vector of nine key values. 
The results of supervised minimum distance classification in the key value space are shown in 
Tables 3 and 4 for the SeaWiFS and MERIS sensors respectively. For comparison, the results of 
supervised minimum distance classification using normalized spectral values of the respective 
sensors are shown in Tables 5 and 6. 
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Figure 1: Simulated SeaWiFS and MERIS spectra for the reference sea water class (class 1) and 

the 8 algal boom classes (Class 2 to 9) 
 

Table 3: Minimum distance classification in the key value space for SeaWiFS 
  Assigned Class (%)   

  1 2 3 4 5 6 7 8 9  Total 
(%) 

1 100 0 0 0 0 0 0 0 0  100 
2 0 69.6 0 0 0 0 0 0 30.4  100 
3 0 0 100 0 0 0 0 0 0  100 
4 0 0 0 100 0 0 0 0 0  100 
5 0 0 0 0 100 0 0 0 0  100 
6 0 0 0 0 0 100 0 0 0  100 
7 0 0 0 0 0 0 100 0 0  100 
8 0 0 0 0 0 0 0 100 0  100 

Actual 
Class 

9 0 0 0 0 0 0 0 0 100  100 
Average Overall Accuracy 96.6 %  

Table 4: Minimum distance classification in the key value space for MERIS 
  Assigned Class (%)   

  1 2 3 4 5 6 7 8 9  Total 
(%) 

1 100 0 0 0 0 0 0 0 0  100 
2 13.0 87.0 0 0 0 0 0 0 0  100 
3 0 0 100 0 0 0 0 0 0  100 
4 0 0 0 100 0 0 0 0 0  100 
5 0 0 0 0 100 0 0 0 0  100 
6 0 0 0 0 0 100 0 0 0  100 
7 0 0 0 0 0 0 100 0 0  100 
8 0 0 0 0 0 0 0 100 0  100 

Actual 
Class 

9 0 0 0 0 0 0 0 0 100  100 
Average Overall Accuracy 98.6 %  
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Table 5: Minimum distance classification in the normalized spectral value space for SeaWiFS 
  Assigned Class (%)   
  1 2 3 4 5 6 7 8 9  Total 

(%) 
1 97.5 2.5 0 0 0 0 0 0 0  100 
2 4.35 91.3 0 0 0 0 0 0 4.35  100 
3 0 2.5 42.5 5.0 0 0 37.5 0 12.5  100 
4 0 20 0 50 20 10 0 0 0  100 
5 0 0 0 0 77.8 22.2 0 0 0  100 
6 0 0 0 0 10 90 0 0 0  100 
7 0 0 0 0 0 0 100 0 0  100 
8 0 0 0 0 0 0 50 25 25  100 

Actual 
Class 

9 0 10 0 0 0 0 0 0 90  100 
Average Overall Accuracy: 73.8% 

Table 6: Minimum distance classification in the normalized spectral value space for MERIS 
  Assigned Class (%)   
  1 2 3 4 5 6 7 8 9  Total 

(%) 
1 100 0 0 0 0 0 0 0 0  100 
2 0 69.6 0 0 0 0 0 0 30.4  100 
3 0 0 57.5 15 0 0 15 2.5 10  100 
4 20 0 0 60 0 20 0 0 0  100 
5 0 0 0 0 100 0 0 0 0  100 
6 0 0 0 0 0 100 0 0 0  100 
7 0 0 0 0 0 0 100 0 0  100 
8 0 0 0 0 0 0 0 100 0  100 

Actual 
Class 

9 0 0 0 0 0 0 0 0 100  100 
Average Overall Accuracy: 87.5% 

 
The accuracy of minimum distance classification using the normalized spectral reflectance 
values of the SeaWiFS sensors is only 73.8%. With four additional bands of the MERIS sensor, 
the accuracy improves to 87.5 % (see Tables 5 and 6). This improvement is expected, as the 
additional bands are located around the chlorophyll- a absorption band at 670 nm, which helps to 
discriminate between the algal bloom classes. The transformation of the reflectance spectra into 
the key value space using a simple matrix multiplication operation improves the classificatio n 
accuracy to 96.6% and 98.6% for SeaWiFS and MERIS respectively (see Tables 3 and 4). It is 
noted that for both SeaWiFS and MERIS sensors, the spectra from eight out of nine classes are 
correctly classified after transformation into the key values. The only class that performs poorly 
is class 2 (Trichodesmium).  
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Figure 2: Samples of MERIS (left) and SeaWiFS (right) reflectance spectra of class 2 

(Trichodesmium) 
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Samples of the reflectance spectra of class 2 (Trichodesmium) are shown in Fig. 2. For MERIS, 
all the class 2 reflectance spectra have similar shapes in the shorter wavelength (<650 nm) 
region. The variation is greater in the longer wavelength region. Hence, it is expected that some 
spectra be misclassified. For SeaWiFS, the within class varia tion is smaller. However, the class 
2 spectra shape is very similar to class 9 and hence many spectra are misclassified as class 9. 
 
5. CONCLUDING REMARKS 
 
We have presented a technique for classification of algal blooms types from remote sensing 
reflectance. This technique is based on a linear transformation of the normalized reflectance 
spectra into a "key value" space. The success of this technique depends on the availability of 
spectral reflectance signatures of known algal bloom classes. The key vectors required for 
constructing the transformation matrix are derived from this set of reflectance signatures. The 
present database of algal bloom signatures used in this study have been accumulated during a 3-
year period of water sampling in Singapore waters and in the Manila Bay. The classification 
technique is tested on the simulated data for the current SeaWiFS and future MERIS ocean color 
sensors. The simulated data are constructed from in-situ radiance data measured using a 
handheld spectrometer. Atmospheric effects are not included in the simulation. Hence, it is 
assumed that atmospheric correction has been done before the classification technique is 
applied. This study show that the spectral bands of the current SeaWiFS sensor is sufficient for 
algal bloom classification, while the MERIS sensor provides certain advantages in identifying 
different algal bloom types. 
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