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ABSTRACT 
 
Algal blooms occur regularly in many different parts of South East Asia. Some of the bloom 
species are known to be harmful or even toxic. Besides the health effects, algal blooms can 
result in economic loss to the fishery industry. Traditional monitoring programmes by in situ 
point measurements are expensive, time consuming and inadequate since they do not have 
sufficient spatial and temporal coverage to monitor the complex dynamic phenomena occurring 
during a red tide episode. Satellite remote sensing measurement of ocean colour provides a 
complementary tool for red tide monitoring. Currently, ocean color data are available from 
SeaWiFS on board the Orbview2 satellite and the recently launched MODIS on board the 
NASA's Terra satellite. Future planned ocean color sensors include the NASDA's ADEOS2-GLI 
and ESA's ENVISAT-MERIS. With the availability of these ocean color satellites, it is 
foreseeable that satellite ocean color data will play an increasingly important role in the 
monitoring of algal blooms. In this paper, we describe the works done in developing algorithms 
for algal bloom detection and classifications using satellite ocean color data in Southeast Asian 
waters.  
 
 
1. INTRODUCTION 
 
Phytoplantons (or algae) are microscopic photosynthetic organisms occurring in natural waters. 
They constitute the base of the marine food web. However, algal blooms may cause harm by 
shading other aquatic life and depleting the dissolved oxygen content. In situation whereby a 
bloom is dominated by toxic algal species, toxins can be accumulated in the food chain and 
eventually be consumed by humans to cause paralytic or diarrhetic shellfish poisoning 
(Richardson 1997). There have been incidences of harmful algal blooms reported in the East and 
Southeast Asian waters. 
 
Traditionally, algal blooms are monitored by in-situ sea water sampling and toxicity test of the 
harvested seafood. Satellite remote sensing measurement of ocean color provides a potential tool 
complementary to in-situ sea-truth measurements for algal bloom monitoring. As the individual 
phytoplankton pigments are characterized by their unique light absorption features, this property 
allows detection and identification of algal blooms by ocean color remote sensing technique 
(Cullen et al. 1997, Kahru and Mitchell 1998, Sathyendranath et al. 1994),  
 
In 1997, a research project to investigate the application of ocean color data for red tide 
monitoring has been initiated at the Centre for Remote Imaging, Sensing and Processing 
(CRISP), with partial funding from NASDA/UN-ESCAP. During the two-year (1997-98) 
project period, regular sea truth water sampling field trips were conducted in Singapore waters. 
Sea water reflectance spectra were acquired using a handheld spectrometer together with 
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measurements of water quality parameters (Lin et al. 1999, Liew et al. 1999, 2000). The sea-
truth water sampling field trips were continued in 1999. 
 
Several algal blooms were observed during some of the field trips. Spectral signatures of several 
types of algal blooms have been measured in Singapore waters and in the Manila Bay. In order 
to assess the capabilities of the various satellite ocean color sensors for algal bloom monitoring, 
the in-situ spectral signatures of the algal bloom types measured using the handheld 
spectrometer were used to simulate the spectral response of the satellite ocean color sensors. In 
this paper, we describe a method of detecting and classifying algal bloom types based on the 
singular value decomposition technique. The satellite sensors tested are SeaWiFS, MERIS and 
GLI. 
 
 
2. OCEAN COLOR SATELLITE SENSORS 
 
Currently, the SeaWiFS sensor on board the Orbview 2 satellite (launched October 1997) 
provides ocean color data with about 1-km resolution. It has six bands in the visible region and 
two in the near-infrared region. Each band has a 20-nm bandwidth. The recently launched 
MODIS sensor on board the NASA's Terra satellite has eight ocean color bands in the visible 
spectral region, with 10 nm bandwidth. The other recent sensor was the OCTS onboard the 
Japan's ADEOS satellite launched in August 1996. ADEOS ceased operation in June 1997 when 
the ADEOS satellite stops its operation. It was the first second-generation ocean color sensor 
after the 10 years gap since NASA's CZCS. Future planned ocean color sensors include the 
NASDA's ADEOS2-GLI and ESA's ENVISAT-MERIS. These future sensors have more 
wavelength bands, all with about 10 nm bandwidths. A summary of the spectral bands present in 
these satellite sensors are tabulated in Table 1. With the availability of these ocean color 
satellites, it is foreseeable that satellite ocean color data will play an increasingly important role 
in the monitoring of algal blooms. Algorithms for algal bloom detection and for classification of 
algal bloom types will be required. 
 
Table 1: The spectral bands of satellite ocean color sensors in the visible band (400 to 760 nm) 

CZCS 
BC - 443 - - 520 550 - - 670 - - - 
BW - 20 - - 20 20 - - 20 - - - 

OCTS 
BC 412 443 - 490 520 - 565 - 665 - - - 
BW 20 20 - 20 20 - 20 - 20 - - - 

SeaWiFS 
BC 412 443 - 490 510 - 555 - 670 - - - 
BW 20 20 - 20 20 - 20 - 20 - - - 

MODIS 
BC 412.5 443 - 488 531 - 551 - 667 678 - 748 
BW 15 10 - 10 10 - 10 - 10 10 - 10 

MERIS 
BC 412.5 442.5 - 490 510 - 560 620 665 681.25 705 753.75 
BW 10 10 - 10 10 - 10 10 10 7.5 10 7.5 

GLI 
BC 412 443 460 490 520 549 565 625 666 680 718 749 
BW 10 10 10 10 10 10 10 10 10 10 10 10 

(Note: BC = Band Center in nm; BW = Bandwidth in nm) 
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3. ALGAL BLOOM CLASSES 
 
Sea-truth water sampling campaigns were carried out from Dec 1996 to Dec 1999 in coastal 
waters around Singapore (Lin et al. 1999, Liew et al. 1999, 2000). In-situ reflectance spectra 
from sea water surface were acquired using a portable spectroradiometer. Several minor algal 
bloom events were sighted and their characteristic reflectance signatures were collected during 
this period. The classes of algal blooms observed include: Trichodesmium (a type of 
cyanobacteria); Chain forming diatoms; Chochlodinium (naked dinoflagellate); Dinoflagellates 
predominantly Dinophysis caudata; Diatoms (Rhizolenia Sp.); and mixture of chain forming 
diatoms (Skeletonema type) with some armoured dinoflagellates. Two additional algal bloom 
classes were collected during two field trips to the Manila Bay. One trip was carried out during 
the algal bloom episode (mainly Ceratium and Pyrodinium Bahamense) in Aug 1998, and the 
other in March 2000. Although there was no report of red tide during the later trip, results of 
water sampling in Manila Bay indicated that there were signs of increasing phytoplankton 
counts. A class of sea water reference spectra for sea water samples with low chlorophyll and 
low suspended solids was also collected during the regular water sampling field trips. 
 
Altogether eight algal bloom classes and one reference sea water class are used in the analysis. 
The nine classes of spectra are tabulated in Table 2. 

 
Table 2: The nine classes of reflectance spectra from algal blooms and reference sea water 

Class Description 
1 Clear sea water reference (Singapore) 
2 Trichodesmium (Singapore) 
3 Chain forming diatoms (Singapore) 
4 Cochlodinium (Singapore) 
5 Ceratium and Pyrodinium Bahamense (Manila Bay) 
6 Dinoflagellates (mainly Dinophysis caudata) (Singapore) 
7 Diatoms (Rhizolenia Sp.) (Singapore) 
8 Chain forming diatoms (Skeletonema) with some armoured dinoflagellates (Singapore) 
9 Protoperidinium and Ceratum (Manila Bay) 

 
 
4. SPECTRAL REFLECTANCE SIGNATURES OF ALGAL BLOOM CLASSES 
 
Spectral reflectance refers to the ratio of the detected radiance reflected from a target surface to 
the total incidence irradiance. In this project, a handheld spectrometer (GER 1500) was used to 
measure the radiance reflected from the sea surface. The detected radiance from the sea surface 
was normalized by the radiance reflected off the surface of a reference white plate to obtain the 
reflectance of the sea surface. The spectrometer has 512 wavelength channels covering the 
wavelength from 350 nm to 1050 nm, with a wavelength resolution of 2 nm.  
 
From the collected spectra, SeaWiFS and GLI data are simulated according to the band 
specifications shown in Table 1. The simulation is done by integrating the spectrometer radiance 
within each specified wavelength window to obtain the desired radiance for the corresponding 
SeaWiFS and GLI channels. A flat spectral response curve is assumed for each of the satellite 
sensor channels. Only the channels in the visible region (400 nm to 760 nm) are considered in 
the simulation. Hence, 6 bands of the SeaWiFS sensor and 12 bands of the GLI sensor are 
simulated. The simulated SeaWiFS and GLI spectral reflectance data for the reference sea water 
and the eight algal bloom classes are shown in Fig. 1. Each spectrum shown in Fig. 1 is the 
mean of a set of spectra corresponding to the reference sea water and each of the algal bloom 
classes. The spectra have been normalized so that each of them has a mean value of zero and a 
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variance of one. In this way, the magnitude of reflectance has no influence on the normalized 
spectra, and the shapes of the spectra can be compared directly. 
 
It can be seen that the GLI spectra of the eight algal bloom classes are quite distinct from each 
other. For many algal bloom types, the spectra can be differentiated visually from their shapes 
around the chlorophyll absorption band at 670 nm. In comparison, the SeaWiFS does not have 
spectral bands beyond 670 nm. Hence, it is expected that SeaWiFS will fare poorer in terms of 
accuracy in classification of the algal bloom types. 
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Figure 1: Simulated SeaWiFS and GLI spectra for the reference sea water class (class 1) and the 
8 algal boom classes (Class 2 to 9) 

 
 
5. CLASSIFICATION OF ALGAL BLOOMS FROM REFLECTANCE 
 
An algorithm based on the singular value decomposition (SVD) technique (Danaher and 
Omongain 1992) has been developed for the detection and classification of algal bloom types 
from reflectance data. This algorithm is a type of supervised classification technique. In this 
algorithm, a "key vector" Vi(λ) for each algal bloom class labelled by the subscript i is first 
determined from the reflectance spectra of the algal bloom class of interest measured during the 
field trips. This key vector acts as a sort of template for this class of algal bloom. A given 
measured spectrum R(λ) to be classified is then "matched" to this key vector using the dot-
product operation to give a key value wi. Mathematically, the dot-product operation is 
represented by the formula:  

w R Vi i= ∑ ( ) ( )λ λ
λ

 (1) 
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Ideally, if the spectrum R(λ) belongs to class-i, then wi=1, otherwise wi=0. Using a training set 
of spectra of known classes, the key vector for each of the nine classes (8 algal bloom classes + 
1 reference sea water class) are obtained using the singular value decomposition technique. The 
key vectors are then matched to each of the unknown spectra R(λ) to be classified, using the dot-
product operation. In this way, each spectrum is transformed into a vector of nine key values. 
The results of supervised minimum distance classification in the key value space are shown in 
Tables 3 and 4 for the SeaWiFS and GLI sensors respectively. For comparison, the results of 
supervised minimum distance classification using normalized spectral values of the respective 
sensors are shown in Tables 5 and 6. 
 
The accuracy of minimum distance classification using the normalized spectral reflectance 
values of the SeaWiFS sensors is only 73.8%. With additional bands of the GLI sensor, the 
accuracy improves to 86.9 % (see Tables 5 and 6). This improvement is expected, as the 
additional bands are located around the chlorophyll-a absorption band at 670 nm, which helps to 
discriminate between the algal bloom classes. The transformation of the reflectance spectra into 
the key value space using a simple matrix multiplication operation improves the classification 
accuracy to 96.6% and 99.5% for SeaWiFS and GLI respectively (see Tables 3 and 4). It is 
noted that for both SeaWiFS and GLI sensors, the spectra from eight out of nine classes are 
correctly classified after transformation into the key values.  
 
 
6. CONCLUDING REMARKS 
 
We have presented a technique for classification of algal blooms types from remote sensing 
reflectance. This technique is based on a linear transformation of the normalized reflectance 
spectra into a "key value" space. The success of this technique depends on the availability of 
spectral reflectance signatures of known algal bloom classes. The key vectors required for 
constructing the transformation matrix are derived from this set of reflectance signatures. The 
present database of algal bloom signatures used in this study have been accumulated during a 3-
year period of water sampling in Singapore waters and in the Manila Bay. The classification 
technique is tested on the simulated data for the current SeaWiFS and future GLI ocean color 
sensors. The simulated data are constructed from in-situ radiance data measured using a 
handheld spectrometer. Atmospheric effects are not included in the simulation. Hence, it is 
assumed that atmospheric correction has been done before the classification technique is 
applied. This study show that the spectral bands of the current SeaWiFS sensor is sufficient for 
algal bloom classification, while the GLI sensor provides certain advantages in identifying 
different algal bloom types. 
 
The results of this study show that it is possible to detect algal blooms satellite ocean color 
sensors. However, in order to identify the algal bloom types, a library of spectral reflectance 
signatures for the different algal bloom types must first be acquired. The spectral reflectance 
signature of a given algal bloom type depends on the species composition present in the bloom. 
Hence, the acquired spectral library may not be exhaustive to be representative of the diverse 
species composition of the algal blooms. The problem may be overcome by modelling the 
spectral signatures of a mixture of different phytoplankton species. The classification algorithm 
will need to be tested using actual GLI data. It is important to acquire a comprehensive spectral 
library of various algal bloom types common in the Southeast Asian waters. The cooperation of 
the many institutions engaged in red tide monitoring and research in the region will be essential 
in order to establish a system for detecting red tide using satellite ocean color data. 
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Table 3: Minimum distance classification in the key value space for SeaWiFS 
  Assigned Class (%)   

  1 2 3 4 5 6 7 8 9  Total 
(%) 

1 100 0 0 0 0 0 0 0 0  100 
2 0 69.6 0 0 0 0 0 0 30.4  100 
3 0 0 100 0 0 0 0 0 0  100 
4 0 0 0 100 0 0 0 0 0  100 
5 0 0 0 0 100 0 0 0 0  100 
6 0 0 0 0 0 100 0 0 0  100 
7 0 0 0 0 0 0 100 0 0  100 
8 0 0 0 0 0 0 0 100 0  100 

Actual 
Class 

9 0 0 0 0 0 0 0 0 100  100 
Average Overall Accuracy 96.6 % 

 
Table 4: Minimum distance classification in the key value space for GLI 
  Assigned Class (%)   

  1 2 3 4 5 6 7 8 9  Total 
(%) 

1 100 0 0 0 0 0 0 0 0  100 
2 0 95.7 0 0 0 0 0 0 4.3  100 
3 0 0 100 0 0 0 0 0 0  100 
4 0 0 0 100 0 0 0 0 0  100 
5 0 0 0 0 100 0 0 0 0  100 
6 0 0 0 0 0 100 0 0 0  100 
7 0 0 0 0 0 0 100 0 0  100 
8 0 0 0 0 0 0 0 100 0  100 

Actual 
Class 

9 0 0 0 0 0 0 0 0 100  100 
Average Overall Accuracy 99.5 % 

Table 5: Minimum distance classification in the normalized spectral value space for SeaWiFS 
  Assigned Class (%)   
  1 2 3 4 5 6 7 8 9  Total 

(%) 
1 97.5 2.5 0 0 0 0 0 0 0  100 
2 4.35 91.3 0 0 0 0 0 0 4.35  100 
3 0 2.5 42.5 5.0 0 0 37.5 0 12.5  100 
4 0 20 0 50 20 10 0 0 0  100 
5 0 0 0 0 77.8 22.2 0 0 0  100 
6 0 0 0 0 10 90 0 0 0  100 
7 0 0 0 0 0 0 100 0 0  100 
8 0 0 0 0 0 0 50 25 25  100 

Actual 
Class 

9 0 10 0 0 0 0 0 0 90  100 
Average Overall Accuracy: 73.8% 

Table 6: Minimum distance classification in the normalized spectral value space for GLI 
  Assigned Class (%)   
  1 2 3 4 5 6 7 8 9  Total 

(%) 
1 100 0 0 0 0 0 0 0 0  100 
2 0 69.6 0 0 0 0 0 0 30.4  100 
3 2.5 0 52.5 12.5 0 0 22.5 0 10.0  100 
4 20 0 0 60 0 20 0 0 0  100 
5 0 0 0 0 100 0 0 0 0  100 
6 0 0 0 0 0 100 0 0 0  100 
7 0 0 0 0 0 0 100 0 0  100 
8 0 0 0 0 0 0 0 100 0  100 

Actual 
Class 

9 0 0 0 0 0 0 0 0 100  100 
Average Overall Accuracy 86.9% 
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